
Distribution of zeros of the partition function for the one dimensional Ising models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1972 J. Phys. A: Gen. Phys. 5 95

(http://iopscience.iop.org/0022-3689/5/1/014)

Download details:

IP Address: 171.66.16.72

The article was downloaded on 02/06/2010 at 04:26

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0022-3689/5/1
http://iopscience.iop.org/0022-3689
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Gen. Phys., Vol. 5 ,  January 1972. Printed in Great Britain 

Distribution of zeros of the partition function 
for the one dimensional Ising models 

S KATSURA and M OHMINAMI 
Department of Applied Physics, Tohoku University, Sendai, Japan 

MS received 1 July 1971 

Abstract. The loci of zeros of the partition functions of the following one dimensional 
Ising models are obtained. (i) Those of S = f and with the nearest ( J )  and the next nearest (J’) 
neighbour interactions. The loci of zeros are classified in several patterns according to a 
combination of J and J’. In particular when J < 0 and J‘ > 0, the existence of two nearly 
concentric circular arcs whose heads approach points on the positive real axis of z 
corresponding to the critical field at zero temperature is confirmed. This suggests that the 
locus of the two and three dimensional king antiferromagnet ( J  < 0, J’ > 0) will be closed 
two concentric circles below the Nee1 temperature. (ii) Those of S = 1 and of S = 3 with 
the nearest neighbour ( J )  interaction. The locus shrinks to 2.9 points (0 = 2nj/(2S+1), 
j = 1,2 , .  . . ,2S) on the unit circle at T = to. It extends along the unit circle for J > 0 
and along a nearly radial direction for J < 0 when the temperature decreases. 

1. Introduction 

When we discuss phase transitions, one useful method is to investigate the distribution 
of zeros of the partition function. If we can find the locus and the distribution function 
on it, physical quantities are determined. We denote the locus of zeros in the complex 
fugacity plane by C. The locus and the distribution on it are expressed by z(s) and g(s) 
in the parametric representation. Then the thermodynamic potential ~ ( z )  and its 
derivative are given by 

~ ’ ( z )  = jcds- g(s) 
z - s  

where Z,(s) is the partition function of an N particle system. Phase transitions occur 
when C cuts the positive real axis of z (at z,) and J,dsg(s) is finite, where A is a part 
of C in the neighbourhood of z ,  (Yang and Lee 1952). The phase transition is of first or 
higher order, when g(0) is finite or zero, respectively. The critical behaviour of the 
system is determined by the nature ofg(s) near z ,  (Abe 1967, Suzuki 1967). 

Lee and Yang (1952) proved that the zeros of the partition function of the Ising model 
of S = made of any connected graph, each bond of which may have a different 
interaction strength, lie on the unit circle in the complex fugacity plane, provided that 
all interactions are ferromagnetic (circle theorem). 

The review ofthe investigations of the distribution ofzeros is given in the introduction 
of Katsura et al(1971, to be referred to as KAY). Recently Asano (1970a, 1970b) proved 
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the circle theorem for the Heisenberg model with ferromagnetic interaction. Suzuki 
and Fisher (1971) discussed generalizations of the circle theorem for the Ising model 
with many-spin interactions and for the Heisenberg model with a general anisotropic 
case. 

In the case of antiferromagnetic interaction, however, the situation which cor- 
responds to the circle theorem is not yet clear. Zeros of the one dimensional Ising model 
for J < 0 lie on the negative real axis (Yang 1952)t. There are some systems which are 
shown to have only negative real zeros. The Husimi-Temperley model (complete 
cluster) with the antiferromagnetic interaction is one of the examples (Heilmann 1971, 
preprint). 

Our purpose is to clarify the nature of the antiferromagnetic phase transitions from 
the viewpoint of the distribution of zeros. Suzuki et al(l970) found that some complex 
zeros appear besides most of the negative real zeros for the finite (4 x 4 and 4 x 6) Ising 
models with the nearest neighbour interaction. KAY investigated the finite (4 x 4 and 
4 x 6) Ising models of S = 3 with the nearest ( J )  and the next nearest ( J ' )  neighbour 
interactionst, and found some typical patterns corresponding to combinations of signs 
and values of J and J' .  In particular, they found that when J < 0, J' > 0, the zeros 
are nearly on two concentric circles which cut the positive real axis of z at z ,  
( = exp( k g p H c / k T ) )  corresponding to the critical magnetic field. 

The locus in that paper, however, was the one estimated by a set of finite points, 
and in a few cases a unique connection of the points was not clear. In the present paper 
the loci of zeros of the one dimensional Ising model of S = $ with the nearest and the 
next nearest neighbour interactions, and those of higher spins ( S  = 1 and 3) with the 
nearest neighbour interaction are obtained. Though these systems do not show phase 
transitions, the continuous loci§ of the models can be obtained from the eigenvalues 
of the transfer matrices by the method of Nilsen and Hemmer (1967). The pattern thus 
obtained resembles the results of numerical experiments of the 4 x 6 system (KAY) 
above the critical temperature and makes a prediction below it possible. 

2. One dimensional Ising model with the nearest and next nearest neighbour 
interactions (spin 1/2) 

We consider the one dimensional Ising model with the nearest and the next nearest 
neighbour interactions. The Hamiltonian of this system is written as 

A+ = -25 C Sisi+ 1-25' S i S i + , - g p H  C Si 
i i i 

where J is the exchange energy of the nearest neighbour interaction, and J' that of the 
next nearest neighbour interaction. For the case where the magnetic field is zero, 
Montroll (1942) obtained the partition function and Stephenson (1970) discussed the 
correlation function of this system, where the transfer matrices can be reduced to the 
second order. 

Oguchi (1965) obtained the eigenvalue equation of the transfer matrix in the presence 
of a magnetic field and showed that four kinds of ground states exist at zero temperature. 
?The  distribution function of zeros of the one dimensional lsing antiferromagnet can be shown to be 
g(s) = (fa)cosh(s/2){x2-coshZ(s/2)) -l:z for Y > cosh(sj2) and equals zero otherwise. where z = -e-'. 
x e - 2 x  ( K  < 0). 
1 Similar calculations were carried out by Karaki (1971). 
5 Noncircular loci for continuous systems (van der Waals gas etc) were given by Hauge and Hemmer 11963). 
Hemmer and Hauge (1964) and Niemeijer and Weijland (1970). 
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The partition function Z in the presence of the magnetic field is written, by the use 
of a transfer matrix 

Z = Tr V N  

0 O \  
I e K + K 8 + C  e - K -  K ' - C  

0 e - K - K ' + C  e K + K ' - C /  \o 
where K = J / 2 k T ,  K' = J ' /2kT ,  C = g p H / 2 k T .  We define the fugacity z 
secular equation of this matrix is 

e-". The 

F(A) 24 -eK+K'(eC+ e-C);13 +$K' ( ezK-e-2K)AZ 

( 5 )  

Physical quantities are given by the maximum eigenvalue of this equation. When 
the phase transition exists, the branch which gives the largest eigenvalue should exchange 
somewhere in the magnetic field. It is known that in one dimensional systems phase 
transitions do not exist. However, when we consider the magnetic field as a complex 
variable, the branch which gives the largest absolute value exchanges somewhere in the 
complex magnetic field. The locus where the exchange occurs is the place where zeros 
of the partition function exist. 

In the special case when K' >> 0, the term e-K' can be neglected and equation (5) is 
factorized, the four eigenvalues being given by 

+ e - K  +K' (e2K'  - ,-2K')(eC + e-C)A - eZK'  - , - 2K ' )2  = 0. ( 

I, = exp(K+K'+C) 

iL2 = exp(K + K ' -  C) 

A3 = exp( - K + K ' )  

E., = exp( - K + K').  (6) 

When K > 0, the eigenvalue which gives the largest absolute value is 2 ,  for /zI < 1 
and I 2  for ( z (  > 1. When K < 0, it is A, for IzI < e+4K, I3 for e+4K < Iz( < e-4K, and 

for e-4K < ( Z I ,  respectively. The branch exchanges at the point where JzI = 1 for 
K > 0 and /zI = e*4K for K < O t .  This means that in the Ising model with nearest and 
next nearest neighbour interactions, zeros distribute on the unit circle when J > 0, 
J' > 0 and on the two concentric circles when J < 0, J' > 0. The approximate reason for 
this has already been given in KAY. In this paper we have explained it from the 
viewpoint of the eigenvalues of the transfer matrix. Of course, equation (6) holds only 
at low temperature. At finite temperature, we need to solve equation (5) explicitly. 

We can obtain the equation of the locus, where the two absolute values of the 
eigenvalues ik and iI become equal, by eliminating t,b from F ( 2 )  = 0 and F ( i  exp(it,b)) = 0, 
where we put Ak = I ,  exp(i$). The equation thus obtained is a fourth order algebraic 
equation. We did not employ this method but adopted the direct numerical method, 
since the coefficients are complicated and further selection of the loci where the largest 
(absolute value) and the second largest eigenvalues coincide is required. 

t Sait6 and Oonuki (1970) pointed out that a phase transition occurs in the one dimensional antiferromagnet 
when an infinitely strong ferromagnetic next neighbour interaction is introduced. 
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Figures 1 and 2 show the loci of zeros thus obtained. In the region where J > 0, 
J' > 0, the locus is a Circular arc (a part of a unit circle) as proved by the Lee--Yang 
theorem. As the temperature decreases, the opening of the circle becomes narrower 
and the heads ofthe locus approach the point z = 1. This means that the one dimensional 
Ising model tends to  have a phase transition at  H = 0 as T -+ 0. 

In the region J > 0, J' < 0, the locus consists of a circular arc and four branches 
coming out at  the end of the arc. When J increases, part of a unit circle extends, and the 
heads of branches reach into the right half plane, and when J increases further, the 
branches vanish. On the other hand when IJ'I increases, part of the arc shrinks and the 
branches become close to the real axis. 

Figure 1. The locus of zeros of the one dimensional 
Ising model for S = i, J c 0, J' 2 0. The first and 
the second numbers denote J / k T  and J ' / k T ,  respec- 
tively. The scales are different from subfigure to sub- 
figure, and are denoted by numbers on the positive 
real axis. The inner circles are denoted by points a t  
the centres in the upper left four subfigures. 

Figure 2. The locus of zeros of the one dimensional 
Ising model for S = 4, J > 0, J' 2 0. The first and 
the second number in parentheses denote J / k T  and 
J ' / k T ,  respectively. The scales are the same for all 
subfigures. The dotted section means that the locus 
extends outside the written region. 

In the region J < 0 and J '  > 0, where these interactions make the occurrence of the 
antiferromagnetic state easy, the locus consists of two nearly concentric circles 
and a segment of a line connecting them. The radii of the circles are given by 
IzI = exp(fgpH,/kT), where H ,  is a critical field, and H ,  = L-25 at T = 0. 

In the region J < 0 and J' < 0, the locus consists of a segment of the negative real 
axis and four branches coming out from the ends of the segment. When IJ'I decreases, 
the branches do not appear, and when IJ'I increases, the branches become dominant. 
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3. Discussions to the results in Q 2 

The ground states of the one dimensional Ising model with the nearest and the next 
nearest neighbour interactions are classified into four types according to the combination 
of J ,  J' and H .  They are: ferromagnetic state (F, + + + + + + + +), antiferromagnetic 
state (AF, 4- - + - + - + -), superantiferromagnetic state (sl, + + - - + + - -), and 
the state where spins arrange in the form + + - + + - + + - (Oguchi 1965). We call 
the last state the s2 state. The energies of them are given by 

- J + J ' + H  E ,  - _ -  
N 

- - J + J '  E A ,  
N 

E,, J J' H 
N 3 3 3  

+-. - - _ - _  

(7) 

The ground state is given by F for J > 0, and J + 25' > 0 (irrespective of H ) .  For 
J < 0, J '  > 0, it changes from AF to F at the critical field H,, = -25. For J > 0, 
J' < 0 and J + 2 J '  < 0, it changes from SI to F at the critical field H,, = - J - 2 5 ' .  
For J < 0, J'  < 0, - J + 2 J '  > 0, it changes from AF to s2 and from s2 to F at 
H,, = - 2J+4J', and H,, = - 2 J - 2 5 ' ,  respectively. For J < 0, J' < 0, - J +  25' < 0, 
it changes from sl  to s2 and s2 to F at the critical field H,, = J - 2J' ,  and Hc4= - 2J - 2J' ,  
respectively. The situation is shown in figure 3. 

J' 

I 
A F - F  F I 

Figure 3. The transition pattern of the one dimensional king model with the nearest ( J )  
and the next nearest (J') neighbour interactions. The state written left-most in each region 
is the ground state at the zero magnetic field and the states written right show the ground 
state when the magnetic field increases. F, + + + + + + + + + ferromagnetic state; 
AF, + - + - + - + - + antiferromagnetic state; sl ,  + + - - + + - - + superantiferro- 
magnetic state; s2, + + - + + - + + - s2 state. 
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When these states are sufficiently stable, the existence of the critical fields should be 
reflected in the locus of the zeros, and hence the two or  four heads of branches of the 
locus should approach points in the positive real axis of .cr, though these transitions exist 
only at  T = 0. Such a situation, however, could not be found in our results. This seem5 
to be similar to the result that zeros distribute on the negative real axis in the case 
J < 0, J '  = 0, where the critical fields H, ,  = f ZJ exist at T = 0. In that case twc.1 
concentric circles corresponding to the critical fields appear by the introduction of thc 
next nearest neighbour ferromagnetic interaction which makes the occurrence of the 
antiferromagnetic state easy. Hence we expect that the locus of zeros will s h o x  the 
existence of the s l  and s2 states, when the fourth neighbour and third neighbour ferro- 
magnetic interactions, respectively, are introduced. 

4. One dimensional Ising model with higher spin 

Asano (1968), Suzuki (1968), and  Griffiths (1969) proved that the zeros of the partition 
function of the Ising model of higher spin distribute on the unit circle when the inter- 
action is ferromagnetic. Kawabata and Suzuki (1969) investigated the finite spin 
systems (4 x 4, S = 1) with antiferromagnetic interaction. 

In the present section we consider the distribution of the zeros of the partition 
function in the one dimensional case. The thermodynamic quantities of the one dimen- 
sional Ising models of higher spins are given by Katsura and Tsujiyama (1966) and bq 
Suzuki et a1 (1967) using the transfer matrix method and by Obokata and Oguchi (1968) 
using the Bethe 'approximation'. We consider the system given by equation (3) where 
J '  = 0. In the case of spin 1, the transfer matrix is 

and the secular equation of this matrix is given b! 

The locus of the zeros has been obtained by the same method as in 4 2 
At infinitely high temperature, the partition function is written a \  

Hence, in the case of spin 1 ,  all zeros accumulate at 0 = 1n 3, and 47~ 3 on the unit 
circle When the temperature decreases, the locus extends from these two points along 
the unit circle when the interaction is ferromagnetic, and it becomes nearly perpendicular 
to the unit circle when the interaction is antiferromagnetic (figure 4) 
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Figure 4. The locus of the one dimensional Ising model for S = 1. The number denotes 
JlkT. The interactions are ferromagnetic in the right three and are antiferromagnetic in 
the left three. 

Similarly in the case of spin 3/2, the transfer matrix is given by 
e 9 K + 3 L  e 3 K + 2 L  e - 3 K + L  e - 9 K  

I I ) . + 2 L  e K + L  e - K  e - 3 K - L  

e - 3 K + L  e - K  e K - L  e 3 K - 2 L  

e - 9 K  e - 3 K - L  e 3 K - 2 L  e 9 K - 3 L  

(14) 

where L = gpH/2kT  = C/2,  and the locus of the zeros of the partition function is shown 
in figure 5 .  When the temperature becomes infinitely high, zeros converge to 0 = 4 2 ,  
n, 3n/2 on the unit circle. 

0 0.01 0. I 0.5 

Figure 5. The locus of the one dimensional Ising model for S = i. The number denotes 
J/kT. The interactions are ferromagnetic in the right three and are antiferromagnetic in 
the left three. 

In general, when the magnitude of spin is S ,  zeros at  infinitely high temperature 
degenerate at  z2'+l = 1 excluding z = 1, and the locus extends along the unit circle 
in the case of ferromagnetic interaction ; it extends nearly perpendicularly to  the unit 
circle in the case of the antiferromagnetic interaction, when the temperature decreases. 

5. Conclusions 

We have obtained the loci of the zeros of the partition function for the one dimensional 
Ising model with the nearest ( J )  and the next nearest (J') neighbour interactions 
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(spin 1/2), and those of the zeros of the partition function for the one dimensional Ising 
model of higher spin with the nearest neighbour interaction. 

In the former, the locus of zeros is composed of a circular arc (part of a unit circlej 
when J > 0 and J '  > 0, two nearly concentric circles and a segment of the negative real 
axis which connects them when J < 0 and J' > 0, part of a unit circle and branches 
which come out from the ends of the arc when J > 0 and J '  < 0, and a segment of the 
negative real axis and the branches which come out from both ends of it when J < 0 
and J '  < 0. Such patterns describe well the distribution of zeros of the numerical 
experiments by KAY for the finite Ising system (4 x 6) above the transition point T,. 

The radii of the concentric circles are given approximately by z ,  = et4'. which 
correspond to the critical fields when the temperature is zero. Though the heads of the 
locus do not approach the points on the real axis in the case of only the nearest neighbour 
antiferromagnetic interaction, the introduction of the next nearest neighbour ferro- 
magnetic interaction makes the occurrence of the antiferromagnetic state easy, and the 
distribution of zeros reflects these situations. 

The existence of the superantiferromagnetic state and the s2 state were not found 
to be reflected in the distribution of zeros. They may be found by introducing the fourth 
and the third neighbour ferromagnetic interactions, respectively. 

From the results of KAY and of the present paper, it is expected that below the Nee1 
temperature the locus of the two and three dimensional Ising antiferromagnet will be 
the two closed, approximately concentric, circles which cut the positive real axis at 
z ,  = exp( + g p H , / k T ) ,  where H ,  is the critical field at that temperature. 

In the higher spin systems, the zeros degenerate at the 2s points of the unit circle 
where Q = 27cj/(2S+ 1) ( j  = 1 , 2 , 3 , .  . . ,2S) at T + x. When the temperature decreases, 
the locus extends along the unit circle in the case where the interaction is ferromagnetic. 
and it extends nearly along the radial direction in the case where the interaction is 
antiferromagnetic. 
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